РАСЧЕТ КЛАССА ОПАСНОСТИ ОТХОДА

Тара из черных металлов, загрязненная лакокрасочными материалами (содержание 5 % и более)

код по ФККО 4 68 112 01 51 3

Определение класса опасности выполнено в соответствии с методикой «Критерии отнесения опасных отходов к классу опасности для окружающей природной среды», разработанной в соответствии со ст.14 ФЗ от 24.06.1998 г. - ФЗ « Об отходах производства и потребления » и утвержденной приказом МПР России от 15 июня 2001 г. № 511.

Класс опасности отходов устанавливается по степени возможного вредного воздействия на окружающую природную среду (далее ОПС) при непосредственном или опосредованном воздействии опасного отхода на нее в соответствии с Критериями.

1. Отнесение отходов к классу опасности для ОПС расчетным методом осуществляется на основании показателя степени опасности компонента отхода (K_i) :

$$K_i = C_i / W_i$$
, где:

 C_{i} - концентрация i -го компонента в опасном отходе (мг/кг отхода);

 W_i - коэффициент степени опасности i -го компонента опасного отхода для ОПС (мг/кг). Показатель степени опасности отхода (K) для ОПС равен:

$$K = K_1 + K_2 + K_3 + \dots + K_n$$
, где:

К - показатель степени опасности отхода для ОПС;

 $K_1, K_2, K_3, ..., K_n$ - показатели степени опасности отдельных компонентов отхода для ОПС.

Состав отхода

N	Название компонента	Расширенный состав	Содержание, %
1.	Тара жестяная	Тара жестяная (93,60%), в том числе:	
		- Железо	91,8000
		- Олово	1,8000
2.	Остатки сырьевых материалов	Остатки сырьевых материалов (6,40%), в том	
	(шпатлевка КО-001)	числе:	
		- Лак пентафталевый (60%), в том числе:	3,8400
		- Масло подсолнечное (32,00%)	1,2288
		- Пентаэритрит (8,50%)	0,3264
		- Фталевый ангидрид (13,50%)	0,5184
		- Канифоль (6,50%)	0,2496
		- Уайт-спирт (23,50%)	0,9024
		- Ксилол (16,00 %)	0,6144
		- Лак кремнийорганический (30%), в том числе:	1,9200
		- Кремнийорганическая смола (75,50%)	1,4496
		- Глифталевая смола (12,00%)	0,2304
		- Ксилол (12,50)	0,6144+0,2400=0,8544
		- Хромовооксидный пигмент (10%)	0,6400
	ИТОГО:		100,0000

Источники информации:

Лившиц М. Л., Пшиялковский Б. И. Лакокрасочные материалы: Справочное пособие. - М.: Химия, 1982 г. [10]

ГОСТ 13345-85 ЖЕСТЬ. Технические условия. [11]

ТУ 6-10-1175-76. Шпатлевка КО-001. [12]

Для изготовления банок для лакокрасочной продукции применяют жесть ГОСТ 13345-85. Жесть белая электролитического лужения листовая, номера 22. шириной 712 мм, длиной 512 мм, марки

ЭЖК, степени твердости В, класса покрытия III. Согласно ГОСТ 13345-85 покрытие оловом составляет для жести III класса -16,8 г/м. Площадь листа = $0,365 \text{ m}^2$; вес 1 листа = 0,633 кг; масса олова = 0,012 кг на 1 лист. [11]

Покрытием лаком и надписями, выполненными краской, пренебрегаем, так как расчет производим исходя из 100% покрытия ЛКМ, т.е. рассчитываем массу краски, оставшейся на жести. Согласно ТУ 6-10-1175-76 максимальный расход шпатлевки составляет $120 \, \text{г/м}^2$. Расход шпатлевки = $0.0437453 \, \text{кr}$ на $1 \, \text{лист.} [12]$

Итого компонентный состав тары жестяной: железо - 0,621 кг на 1 лист, или 91,8%, олово - 0,012 кг на 1 лист, или 1,8%, шпатлевка-0,0437 кг на 1 лист, или 6,5%, всего - 0,677 кг на 1 лист или 100.0%.

Шпатлевка КО-001 имеет следующий компонентный состав [10]:

- Лак пентафталевый 60%.
- Лак кремнийорганический 30%,
- Хромовооксидный пигмент 10%.

Лак пентафталевый имеет следующий компонентный состав [10]:

- Масло подсолнечное 32.0%;
- Пентаэритрит 8,5%;
- Фталевый ангидрид 13,5%;
- Канифоль 6,5%,
- Уайт-спирт 23,5%;
- Ксилол 16,0%.

Лак кремнийорганический имеет следующий компонентный состав [10]:

- Кремнийорганическая смола 75,5%,
- Глифталевая смола 12,0%,
- Ксилол 12,5%.

Таким образом, состав тары из черных металлов, загрязненной лакокрасочными материалами, можно представить следующим образом:

N	Название компонента	Содержание, %		
1.	Железо	91,8000		
2.	Олово	1,8000		
3.	Масло подсолнечное	1,2288		
4.	Пентаэритрит	0,3264		
5.	Фталевый ангидрид	0,5184		
6.	Канифоль	0,2496		
7.	Уайт-спирт	0,9024		
8.	Ксилол	0,8544		
9.	Кремнийорганическая смола	1,4496		
10.	Глифталевая смола	0,2304		
11.	Хромовооксидный пигмент	0,6400		
	ИТОГО:	100,0000		

Расчёт коэффициентов степени опасности для окружающей природной среды (Wi)

1. Железо (W = 14251.02700)

Уровни экологической опасности для различных природных сред:

- 1. ПДКп (ОДК) [мг/кг]: 1-10 (2 балла) [2]
- 2. ПДКв (ОДУ, ОБУВ) [мг/л]: 0.11-1 (3 балла) [3]
- 3. Класс опасности в воде хозяйственно-питьевого использования: 3 (3 балла) [3]
- 4. ПДКр.х. (ОБУВ) [мг/л]: 0.011-0.1 (3 балла) [4]
- 5. Класс опасности в воде рыбохозяйственного использования: 4 (4 балла) [4]
- 6. ПДКпп (МДУ, МДС) [мг/кг]: 1.1-10 (3 балла) [8]
- 7. Lg (S[мг/л]/ПДКв [мг/л]): <1 (4 балла) [6]
- 8. Lg (Снас[мг/м 3]/ПДКр.з.): <1 (4 балла) [6]
- 9. Lg (Снас[мг/м³]/ПДКс.с.(ПДК м.р.)): <1.6 (4 балла) [6]
- 10. LD₅₀ [мг/кг]: >5000 (4 балла) [6]
- 11. LC₅₀ [мг/м 3]: >50000 (4 балла) [6]
- 12. Персистентность (трансформация в окружающей природной среде):

Образование продуктов, токсичность которых близка к токсичности исходного вещества (3 балла)

- 13. Биоаккумуляция (поведение в пишевой цепочке): Накопление в нескольких звеньях (2 балла)
- 14. Показатель информационного обеспечения: 4 балла

Относительный параметр опасности компонента для ОПС (X).

 $X = (C_{YMMA} баллов)/14 = 3.357$

$$Lg(W) = 2 + 4/(6-Z) = 4.154$$

, где
$$Z=4*X/3-1/3=4.143$$

Коэффициент степени опасности для окружающей природной среды (W).

$$W = 10**Lg(W) = 14251.027$$

2. Олово (W = 4641.58900)

Уровни экологической опасности для различных природных сред:

- 1. ПДКпп (МДУ, МДС) [мг/кг]: >10 (4 балла) [8]
- 2. Lg (S[мг/л]/ПДКв [мг/л]): <1 (4 балла) [9]
- 3. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

X = (Сумма баллов)/3 = 3.000

$$Lg(W) = Z = 3.667$$

Коэффициент степени опасности для окружающей природной среды (W).

$$W = 10**Lg(W) = 4641.589$$

3. Масло подсолнечное (W = 215.44300)

Уровни экологической опасности для различных природных сред:

- 1. ПДКв (ОДУ, ОБУВ) [мг/л]: 0.11-1 (3 балла) [3]
- 2. Класс опасности в воде хозяйственно-питьевого использования: 2 (2 балла) [3]
- 3. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

 $X = (C_{\text{УММА}} \, \text{баллов})/3 = 2.000$

$$Lg(W) = Z = 2.333$$

Коэффициент степени опасности для окружающей природной среды (W).

$$W = 10**Lg(W) = 215.443$$

4. Пентаэритрит (W = 1000.00000)

Уровни экологической опасности для различных природных сред:

- 1. LD₅₀ [мг/кг]: >5000 (4 балла) [6]
- 2. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

 $X = (C_{\text{УММА}} \, \text{баллов})/2 = 2.500$

$$Lg(W) = Z = 3.000$$

Коэффициент степени опасности для окружающей природной среды (W).

$$W = 10**Lg(W) = 1000.000$$

5. Фталевый ангидрид (W = 599.48400)

Уровни экологической опасности для различных природных сред:

- 1. ПДКр.х. (ОБУВ) [мг/л]: 0.011-0.1 (3 балла) [7]
- 2. Lg (Снас[мг/м³]/ПДКс.с.(ПДК м.р.)): 3.8-1.6 (3 балла) [6]
- 3. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

$$X = (Cумма баллов)/3 = 2.333$$

$$Lg(W) = Z = 2.778$$

Коэффициент степени опасности для окружающей природной среды (W).

$$W = 10**Lg(W) = 599.484$$

6. Канифоль (W = 215.44300)

Уровни экологической опасности для различных природных сред:

- 1. ПДКс.с. (ПДКм.р., ОБУВ) [мг/м³]: 0.11-1 (3 балла) ([5])
- 2. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

$$X = (Сумма баллов)/2 = 2.000$$

$$Lg(W) = Z = 2.333$$

, где Z=4*X/3-1/3=2.333

Коэффициент степени опасности для окружающей природной среды (W).

W = 10**Lg(W) = 215.443

7. Уайт-спирит(W = 215.44300)

Уровни экологической опасности для различных природных сред:

- 1. ПДКс.с. (ПДКм.р., ОБУВ) [мг/м³]: 0.11-1 (3 балла) [5]
- 2. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

X = (Сумма баллов)/2 = 2.000

$$Lg(W) = Z = 2.333$$
 , где $Z=4*X/3-1/3=2.333$

Коэффициент степени опасности для окружающей природной среды (W).

W = 10**Lg(W) = 215.443

8. Ксилол (W = 1668.10100)

Уровни экологической опасности для различных природных сред:

- 1. LD₅₀ [мг/кг]: 151-5000 (3 балла) [6]
- 2. LC_{50} [мг/м³]: >50000 (4 балла) [6]
- 3. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

X = (Сумма баллов)/3 = 2.667

$$Lg(W) = Z = 3.222$$
 , где $Z=4*X/3-1/3=3.222$

Коэффициент степени опасности для окружающей природной среды (W).

W = 10**Lg(W) = 1668.101

9. Кремнеорганическая смола (W = 215.44300)

Уровни экологической опасности для различных природных сред:

- 1. ПДКр.х. (ОБУВ) [мг/л]: 0.011-0.1 (3 балла) [4]
- 2. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

X = (Cумма баллов)/2 = 2.000

$$Lg(W) = Z = 2.333$$
 , где $Z=4*X/3-1/3=2.333$

Коэффициент степени опасности для окружающей природной среды (W).

W = 10**Lg(W) = 215.443

10. Глифталевая смола (W = 1668.10100)

Уровни экологической опасности для различных природных сред:

- 1. ПДКв (ОДУ, ОБУВ) [мг/л]: 0.11-1 (3 балла) [3]
- 2. Класс опасности в воде хозяйственно-питьевого использования: 4 (4 балла) [3]
- 3. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

X = (Сумма баллов)/3 = 2.667

$$Lg(W) = Z = 3.222$$
 , где $Z=4*X/3-1/3=3.222$

Коэффициент степени опасности для окружающей природной среды (W).

W = 10**Lg(W) = 1668.101

11. Хромовооксидный пигмент (W = 215.44300)

Уровни экологической опасности для различных природных сред:

- 1. ПДКр.х. (ОБУВ) [мг/л]: 0.011-0.1 (3 балла) [4]
- 2. Показатель информационного обеспечения: 1 балл

Относительный параметр опасности компонента для ОПС (X).

 $X = (C_{YMMA} \, баллов)/2 = 2.000$

$$Lg(W) = Z = 2.333$$
 , где $Z=4*X/3-1/3=2.333$

Коэффициент степени опасности для окружающей природной среды (W).

W = 10**Lg(W) = 215.443

Результаты расчета показателей степени опасности компонентов отхода:

N	Название компонента	Сі [мг/кг]	Wi [мг/кг]	Ki
1.	Железо	918000.000	14251.02700	64.41641
2.	Олово	18000.000	4641.58900	3.87798
3.	Масло подсолнечное	12288.000	215.44300	57.03597
4.	Пентаэритрит	3264.000	1000.00000	3.26400
5.	Фталевый ангидрид	5184.000	599.48400	8.64744
6.	Канифоль	2496.000	215.44300	11.58543
7.	Уайт-спирт	9024.000	215.44300	41.88579
8.	Ксилол	8544.000	1668.10100	5.12199
9.	Кремнийорганическая смола	14496.000	215.44300	67.28462
10.	Глифталевая смола	2304.000	1668.10100	1.38121
11.	Хромовооксидный пигмент	6400.000	215.44300	29.70623
	ИТОГО:	1000000.000		294.20707

Примечание:

Показатель степени опасности отхода для ОПС составляет:

$$K = K_1 + K_2 + K_3 + K_4 + K_5 + K_6 + K_7 + K_8 + K_9 + K_{10} + K_{11} = 294.20707$$

Отнесение к классу опасности отхода расчетным методом по показателю степени опасности отхода осуществляется в соответствии п. 14 «Критериев...»:

K = 294.207 $1000 \ge K > 100$, что соответствует III классу опасности

Литература:

- «Критерии отнесения опасных отходов к классу опасности для окружающей природной среды», утверждены приказом МПР России от 15.06.2001 г. № 511.
- ФГУЗ «Российский регистр потенциально опасных химических и биологических веществ (РРПОХБВ)» Росприроднадзора России, АРИПС «Опасные вещества», Токсикологический вестник, М., 1994-2002.
- Гигиенические нормативы ГН 2.1.5.1315-03. «Предельно-допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования», Минздрав России, утв. 30.04.2003 г. N 78.
- Перечень рыбохозяйственных нормативов: предельно допустимые концентрации (ПДК) и ориентировочно безопасные уровни воздействия (ОБУВ) вредных веществ для воды водных объектов, имеющих рыбохозяйственное значение, М.: ВНИРО, 1999.
- ГН 2.1.6.2309-07 Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест.
- Беспамятнов Г.П., Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде. Справочник, Л., Химия, 1985,; Вредные вещества в промышленности. под ред. Лазарева В.С., т. 1-3, Л., Химия, 1977 г.
- Обобщенный перечень ПДК вредных веществ в воде водных объектов, используемых в рыбохозяйственных целях. В кн.: Контроль химических и биологических параметров ОС. П./ред. Л.К. Исаева, СПб, 1998 г.
 - 8. Экология и безопасность. Справочник. п/ред. Н.Г. Рыбальского, Москва, ВНИИПИ, 1993 год
- Новый справочник химика и технолога. Основные свойства неорганических, органических и элементорганических соединений. СПб, АНО НПО "Мир и семья", 2002 г.; Справочник химика, Л., Химия, 1971 г.
- Лившиц М. Л., Пшиялковский Б. И. Лакокрасочные материалы: Справочное пособие. М.: Химия, 1982 г. - 360 с., ил.
 - ГОСТ 13345-85 ЖЕСТЬ. Технические условия. 11.
 - 12 ТУ 6-10-1175-76. Шпатлевка К0-001.

^{1.} Сі - концентрация і-го компонента в отходе.

Wi - коэффициент степени опасности i-го компонента опасного отхода для ОПС.
Ki = Ci/Wi - показатель степени опасности i-го компонента опасного отхода для ОПС.